Particle Size – US Sieve Series and Tyler Mesh Size Equivalents

Background

Sieving or screening is a method of separating a mixture or grains or particles into 2 or more size fractions, the over sized materials are trapped above the screen, while undersized materials can pass through the screen.

Sieves can be used in stacks, to divide samples up into various size fractions and hence determine particle size distributions.

Sieves and screen are usually used for larger particle sized materials i.e., greater than approximately 50µm (0.050mm).

Size Equivalents

Two scales that are used to classify particle sizes are the US Sieve Series and Tyler Equivalent, sometimes called Tyler Mesh Size or Tyler Standard Sieve Series. The most common mesh opening sizes for these scales are given in the table below and provide an indication of particle sizes.

US Sieve Size	Tyler Equivalent	Opening	
		mm	in
-	2 ¹ /2 Mesh	8.00	0.312
-	3 Mesh	6.73	0.265
No. 31/2	3½ Mesh	5.66	0.233
No. 4	4 Mesh	4.76	0.187
No. 5	5 Mesh	4.00	0.157
No. 6	6 Mesh	3.36	0.132
No. 7	7 Mesh	2.83	0.111
No. 8	8 Mesh	2.38	0.0937
No.10	9 Mesh	2.00	0.0787
No. 12	10 Mesh	1.68	0.0661
No. 14	12 Mesh	1.41	0.0555
No. 16	14 Mesh	1.19	0.0469
No. 18	16 Mesh	1.00	0.0394
No. 20	20 Mesh	0.841	0.0331
No. 25	24 Mesh	0.707	0.0278
No. 30	28 Mesh	0.595	0.0234
No. 35	32 Mesh	0.500	0.0197
No. 40	35 Mesh	0.420	0.0165
No. 45	42 Mesh	0.354	0.0139
No. 50	48 Mesh	0.297	0.0117
No. 60	60 Mesh	0.250	0.0098
No. 70	65 Mesh	0.210	0.0083
No. 80	80 Mesh	0.177	0.0070

file:////Fs/agm%20file%20server/Engineering/Department...tpub/wwwroot/technical%20info/Mesh_Size_Equivalents.htm (1 of 2)11/27/2006 1:35:42 PM

- Mesh Size

No.100	100 Mesh	0.149	0.0059
No. 120	115 Mesh	0.125	0.0049
No. 140	150 Mesh	0.105	0.0041
No. 170	170 Mesh	0.088	0.0035
No. 200	200 Mesh	0.074	0.0029
No. 230	250 Mesh	0.063	0.0025
No. 270	270 Mesh	0.053	0.0021
No. 325	325 Mesh	0.044	0.0017
No. 400	400 Mesh	0.037	0.0015

The mesh number system is a measure of how many openings there are per linear inch in a screen. Sizes vary by a factor of $\sqrt{2}$. This can easily be determined as screens are made from wires of standard diameters, however, opening sizes can vary slightly due to wear and distortion.

US sieve sizes differ from Tyler Screen sizes in that they are arbitrary numbers.